07/11/2014

Topology > Base

                    Topology >         Base





Definition:

Let (X,\mathcal{T}) be a topological space. A collection \mathcal{B} of open sets is called a base for the topology \mathcal{T} if every open set U is the union of sets in \mathcal{B}.
Obviously \mathcal{T} is a base for itself.

 Conditions for being a base:

In a topological space (X,\mathcal{T}) a collection \mathcal{B} is a base for \mathcal{T} if and only if it consists of open sets and for each point x\in X and open neighborhood U of xthere is a set B\in\mathcal{B} such that x\in B\subseteq U.

Constructing topologies from base:

Let X be any set and \mathcal{B} a collection of subsets of X. There exists a topology \mathcal{T} on X such that \mathcal{B} is a base for \mathcal{T} if and only if \mathcal{B} satisfies the following:
  1. If x\in X, then there exists a B\in\mathcal{B} such that x\in B.
  2. If B_1,B_2\in\mathcal{B} and x\in B_1\cap B_2, then there is a B\in\mathcal{B} such that x\in B\subseteq B_1\cap B_2.
Remark : Note that the first condition is equivalent to saying that The union of all sets in \mathcal{B} is X.


Semibasis:


Let X be any set and \mathcal{S} a collection of subsets of X. Then \mathcal{S} is a semibase if a base of X can be formed by a finite intersection of elements of \mathcal{S}.