25/10/2014

Metric space: Isometry

                    Metric Space: Isometry





An isometry is a surjective mapping f: X \rightarrow Y, where (X , \delta ) and (Y , \rho ) are metric spaces and for all a, b \in X\delta (a, b) = \rho (f(a), f(b)).
In this case, (X, \delta ) and (Y, \rho ) are said to be isometric.
Note that the injectivity of f follows from the property of preserving distance:
f(a)=f(b)
\implies\rho(f(a),f(b))=0
\implies\delta(a,b)=0
\implies a=b
So an isometry is necessarily bijective.