16/10/2014

Metric space: Interior Point

METRIC SPACE:   Interior Point:



Definitions

Definition: We say that x is an interior point of A iff there is an \epsilon > 0 such that: B_\epsilon(x) \subseteq A. This intuitively means, that x is really 'inside' A - because it is contained in a ball inside A - it is not near the boundary of A.
Illustration:
Interior PointNot Interior Points
Internal point.svgNot internal point.svg
Definition: The interior of a set A is the set of all the interior points of A. The interior of a set A is marked int(A). Useful notations: \operatorname{int}(S)=\{x\in S|x\text{ is an interior point of }S\} and \operatorname{int}(S)=\cup \{A\subseteq S|A\text{ is open }\!\!\}\!\!\text{ }.

Properties

Some basic properties of int (For any sets A,B):
  • int(A) \subseteq A
  • int(int(A)) = int(A)\,
  • int(A \cap B) = int(A) \cap int(B)
  • A \subseteq B \Rightarrow int(A) \subseteq int(B)
  • A\text{ is open}\Leftrightarrow A=\operatorname{int}(A)
Proof of the first:
We need to show that:  x\in int(A) \Rightarrow x \in A. But that's easy! by definition, we have that x\in B_\epsilon(x)\subseteq A and therefore x\in A
Proof of the second:
In order to show that int(int(A)) = int(A)\,, we need to show that int(int(A)) \subseteq int(A) and int(int(A)) \supseteq int(A).
The " \subseteq" direction is already proved: if for any set A, int(A) \subseteq A, then by taking int(A) as the set in question, we get int(int(A)) \subseteq int(A).
The " \supseteq" direction:
let x \in int(A). We need to show that x \in int(int(A)).
If x\in int(A) then there is a ball B_\epsilon(x) \subseteq A. Now, every point y, in the ball B_\frac{\epsilon}{2}(x)  an internal point to A (inside int(A)), because there is a ball around it, inside A: y \in 
B_\frac{\epsilon}{2}(x) \Rightarrow B_\frac{\epsilon}{2}(y) \subset B_\epsilon(x) \subset A.
We have that x\in B_\frac{\epsilon}{2}(x) \subset int(A) (because every point in it is inside int(A)) and by definition x \in int(int(A)).
Hint: To understand better, draw to yourself x, B_\epsilon(x), B_\frac{\epsilon}{2}(x), y, B_\frac{\epsilon}{2}(y).
Proof of the rest is left to the reader.

Reminder

  • [a, b] : all the points x, such that a \leq x \leq b
  • (a, b) : all the points x, such that a < x < b

Example

For the metric space \mathbb{R} (the line), we have:
  • int([a,b]) = (a,b)
  • int((a,b]) = (a,b)
  • int([a,b)) = (a,b)
  • int((a,b)) = (a,b)
Let's prove the first example (int([a,b]) = (a,b)). Let x\in (a,b) (that is: a < x < b ) we'll show that x is an internal point.
Let \epsilon = \min\{x - a , b - x \}. Note that x + \epsilon \leq x + b - x = b and x - \epsilon \geq x - x + a = a. Therefore  B_\epsilon(x) = (x - \epsilon, x + \epsilon) \subset (a,b).
We have shown now that every point x in (a,b) is an internal point. Now what about the points a,b ? let's show that they are not internal points. If a was an internal point of [a,b], there would be a ball B_\epsilon(a) \subset [a,b]. But that would mean, that the point  a - \frac{\epsilon}{2} is inside [a, b]. but because   a - \frac{\epsilon}{2} < a  that is a contradiction. We show similarly that b is not an internal point.
To conclude, the set (a,b) contains all the internal points of [a,b]. And we can mark int([a,b]) = (a,b)