METRIC SPACE: Interior Point:
Definitions
Definition: We say that x is an interior point of A iff there is an such that: . This intuitively means, that x is really 'inside' A - because it is contained in a ball inside A - it is not near the boundary of A.
Illustration:
Definition: The interior of a set A is the set of all the interior points of A. The interior of a set A is marked . Useful notations: and .
Properties
Some basic properties of int (For any sets A,B):
Proof of the first:
We need to show that: . But that's easy! by definition, we have that and therefore
We need to show that: . But that's easy! by definition, we have that and therefore
Proof of the second:
In order to show that , we need to show that and .
The " " direction is already proved: if for any set A, , then by taking as the set in question, we get .
The " " direction:
let . We need to show that .
If then there is a ball . Now, every point y, in the ball an internal point to A (inside ), because there is a ball around it, inside A: .
We have that (because every point in it is inside ) and by definition .
Hint: To understand better, draw to yourself .
In order to show that , we need to show that and .
The " " direction is already proved: if for any set A, , then by taking as the set in question, we get .
The " " direction:
let . We need to show that .
If then there is a ball . Now, every point y, in the ball an internal point to A (inside ), because there is a ball around it, inside A: .
We have that (because every point in it is inside ) and by definition .
Hint: To understand better, draw to yourself .
Proof of the rest is left to the reader.
Reminder
- [a, b] : all the points x, such that
- (a, b) : all the points x, such that
Example
For the metric space (the line), we have:
Let's prove the first example (). Let (that is: ) we'll show that is an internal point.
Let . Note that and . Therefore .
We have shown now that every point x in is an internal point. Now what about the points ? let's show that they are not internal points. If was an internal point of , there would be a ball . But that would mean, that the point is inside . but because that is a contradiction. We show similarly that b is not an internal point.
To conclude, the set contains all the internal points of . And we can mark
Let . Note that and . Therefore .
We have shown now that every point x in is an internal point. Now what about the points ? let's show that they are not internal points. If was an internal point of , there would be a ball . But that would mean, that the point is inside . but because that is a contradiction. We show similarly that b is not an internal point.
To conclude, the set contains all the internal points of . And we can mark