30/09/2014

Solutions (Dimension)

Solutions: Dimension



Assume that all spaces are finite-dimensional unless otherwise stated.

Problem 1
Find a basis for, and the dimension of,   \mathcal{P}_2 .
Answer
One basis is  \langle 1,x,x^2 \rangle  , and so the dimension is three.
Problem 2
Find a basis for, and the dimension of, the solution set of this system.

\begin{array}{*{4}{rc}r}
x_1  &-  &4x_2  &+  &3x_3  &-  &x_4  &=  &0  \\
2x_1  &-  &8x_2  &+  &6x_3  &-  &2x_4 &=  &0  
\end{array}
Answer
The solution set is

\{\begin{pmatrix} 4x_2-3x_3+x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}
\,\big|\, x_2,x_3,x_4\in\mathbb{R}\}
so a natural basis is this

\langle \begin{pmatrix} 4 \\ 1 \\ 0 \\ 0 \end{pmatrix},
\begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix},
\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}   \rangle
(checking linear independence is easy). Thus the dimension is three.

Problem 3
Find a basis for, and the dimension of,  \mathcal{M}_{2 \! \times \! 2} , the vector space of  2 \! \times \! 2  matrices.
Answer
For this space

\{\begin{pmatrix}
a  &b  \\
c  &d
\end{pmatrix} \,\big|\, a,b,c,d\in\mathbb{R}\}
=\{a\cdot\begin{pmatrix}
1  &0  \\
0  &0
\end{pmatrix}
+\dots+
d\cdot\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix} \,\big|\, a,b,c,d\in\mathbb{R}\}
this is a natural basis.

\langle 
\begin{pmatrix}
1  &0  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &1  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
1  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix}   \rangle
The dimension is four.
Problem 4
Find the dimension of the vector space of matrices

\begin{pmatrix}
a  &b  \\
c  &d
\end{pmatrix}
subject to each condition.
  1. a, b, c, d\in\mathbb{R}
  2. a-b+2c=0 and d\in\mathbb{R}
  3. a+b+c=0a+b-c=0, and d\in\mathbb{R}
Answer
  1. As in the prior exercise, the space \mathcal{M}_{2 \! \times \! 2} of matrices without restriction has this basis
    
\langle 
\begin{pmatrix}
1  &0  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &1  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
1  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix}   \rangle
    and so the dimension is four.
  2. For this space
    
\{\begin{pmatrix}
a  &b  \\
c  &d
\end{pmatrix} \,\big|\, a=b-2c\text{ and }d\in\mathbb{R}\}
=\{b\cdot\begin{pmatrix}
1  &1  \\
0  &0
\end{pmatrix}
+c\cdot\begin{pmatrix}
-2  &0  \\
1  &0
\end{pmatrix}
+d\cdot\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix} \,\big|\, b,c,d\in\mathbb{R}\}
    this is a natural basis.
    
\langle 
\begin{pmatrix}
1  &1  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
-2  &0  \\
1  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix}   \rangle
    The dimension is three.
  3. Gauss' method applied to the two-equation linear system gives that c=0 and that a=-b. Thus, we have this description
    
\{\begin{pmatrix}
-b  &b  \\
0  &d
\end{pmatrix} \,\big|\, b,d\in\mathbb{R}\}
=\{b\cdot\begin{pmatrix}
-1  &1  \\
0  &0
\end{pmatrix}
+d\cdot\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix} \,\big|\, b,d\in\mathbb{R}\}
    and so this is a natural basis.
    
\langle 
\begin{pmatrix}
-1  &1  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix}   \rangle
    The dimension is two.

Problem 5
Find the dimension of each.
  1. The space of cubic polynomials p(x) such that p(7)=0
  2. The space of cubic polynomials p(x) such that p(7)=0 and p(5)=0
  3. The space of cubic polynomials p(x) such that p(7)=0p(5)=0, and p(3)=0
  4. The space of cubic polynomials p(x) such that p(7)=0p(5)=0p(3)=0, and p(1)=0
Answer
The bases for these spaces are developed in the answer set of the prior subsection.
  1. One basis is  \langle -7+x,-49+x^2,-343+x^3 \rangle  . The dimension is three.
  2. One basis is \langle 35-12x+x^2,420-109x+x^3 \rangle  so the dimension is two.
  3. A basis is \{-105+71x-15x^2+x^3\}. The dimension is one.
  4. This is the trivial subspace of \mathcal{P}_3 and so the basis is empty. The dimension is zero.
Problem 6
What is the dimension of the span of the set \{\cos^2\theta,\sin^2\theta,\cos2\theta,\sin2\theta\}? This span is a subspace of the space of all real-valued functions of one real variable.
Answer
First recall that \cos2\theta=\cos^2\theta-\sin^2\theta, and so deletion of \cos2\theta from this set leaves the span unchanged. What's left, the set \{\cos^2\theta,\sin^2\theta,\sin2\theta\}, is linearly independent (consider the relationship c_1\cos^2\theta+c_2\sin^2\theta+c_3\sin2\theta=Z(\theta) where Z is the zero function, and then take \theta=0\theta=\pi/4, and \theta=\pi/2 to conclude that each c is zero). It is therefore a basis for its span. That shows that the span is a dimension three vector space.
Problem 7
Find the dimension of  \mathbb{C}^{47} , the vector space of 47-tuples of complex numbers.
Answer
Here is a basis

\langle (1+0i,0+0i,\dots,0+0i),\,(0+1i,0+0i,\dots,0+0i),(0+0i,1+0i,\dots,0+0i),\ldots  \rangle
and so the dimension is  2\cdot 47=94 .
Problem 8
What is the dimension of the vector space \mathcal{M}_{3 \! \times \! 5} of  3 \! \times \! 5 matrices?
Answer
A basis is

\langle 
\begin{pmatrix}
1  &0  &0  &0  &0  \\
0  &0  &0  &0  &0  \\
0  &0  &0  &0  &0
\end{pmatrix},
\begin{pmatrix}
0  &1  &0  &0  &0  \\
0  &0  &0  &0  &0  \\
0  &0  &0  &0  &0
\end{pmatrix},
\dots,
\begin{pmatrix}
0  &0  &0  &0  &0  \\
0  &0  &0  &0  &0  \\
0  &0  &0  &0  &1
\end{pmatrix}   \rangle
and thus the dimension is  3\cdot 5=15 .

Problem 9
Show that this is a basis for \mathbb{R}^4.

\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},
\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix},
\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix},
\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}  \rangle
(The results of this subsection can be used to simplify this job.)
Answer
In a four-dimensional space a set of four vectors is linearly independent if and only if it spans the space. The form of these vectors makes linear independence easy to show (look at the equation of fourth components, then at the equation of third components, etc.).
Problem 10
Refer to Example 2.9.
  1. Sketch a similar subspace diagram for \mathcal{P}_2.
  2. Sketch one for \mathcal{M}_{2 \! \times \! 2}.
Answer
  1. The diagram for \mathcal{P}_2 has four levels. The top level has the only three-dimensional subspace, \mathcal{P}_2 itself. The next level contains the two-dimensional subspaces (not just the linear polynomials; any two-dimensional subspace, like those polynomials of the form ax^2+b). Below that are the one-dimensional subspaces. Finally, of course, is the only zero-dimensional subspace, the trivial subspace.
  2. For \mathcal{M}_{2 \! \times \! 2}, the diagram has five levels, including subspaces of dimension four through zero.

Problem 11
Where  S  is a set, the functions  f:S\to\mathbb{R}  form a vector space under the natural operations: the sum f+g is the function given by  f+g\,(s)=f(s)+g(s)  and the scalar product is given by  r\cdot f \, (s)=r\cdot f(s) . What is the dimension of the space resulting for each domain?
  1.  S=\{1\}
  2.  S=\{1,2\}
  3.  S=\{1,\ldots,n\}
Answer
  1. One
  2. Two
  3.  n
Problem 12
(See Problem 11.) Prove that this is an infinite-dimensional space: the set of all functions  f:\mathbb{R}\to\mathbb{R} under the natural operations.
Answer
We need only produce an infinite linearly independent set. One is  \langle f_1,f_2,\ldots \rangle   where  f_i:\mathbb{R}\to\mathbb{R}  is

f_i(x)=\begin{cases}
1  &\text{if }x=i  \\
0  &\text{otherwise}
\end{cases}
the function that has value 1 only at x=i.
Problem 13
(See Problem 11.) What is the dimension of the vector space of functions f:S\to\mathbb{R}, under the natural operations, where the domain S is the empty set?
Answer
Considering a function to be a set, specifically, a set of ordered pairs (x,f(x)), then the only function with an empty domain is the empty set. Thus this is a trivial vector space, and has dimension zero.
Problem 14
Show that any set of four vectors in  \mathbb{R}^2  is linearly dependent.
Answer
Apply Corollary 2.8.
Problem 15
Show that the set  \langle \vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3 \rangle \subset\mathbb{R}^3  is a basis if and only if there is no plane through the origin containing all three vectors.
Answer
A plane has the form \{\vec{p}+t_1\vec{v}_1+t_2\vec{v}_2\,\big|\, t_1,t_2\in\mathbb{R}\}. (The first chapter also calls this a "2-flat", and contains a discussion of why this is equivalent to the description often taken in Calculus as the set of points (x,y,z)subject to a condition of the form ax+by+cz=d). When the plane passes through the origin we can take the particular vector \vec{p} to be \vec{0}. Thus, in the language we have developed in this chapter, a plane through the origin is the span of a set of two vectors.
Now for the statement. Asserting that the three are not coplanar is the same as asserting that no vector lies in the span of the other two— no vector is a linear combination of the other two. That's simply an assertion that the three-element set is linearly independent. By Corollary 2.12, that's equivalent to an assertion that the set is a basis for \mathbb{R}^3.
Problem 16
  1. Prove that any subspace of a finite dimensional space has a basis.
  2. Prove that any subspace of a finite dimensional space is finite dimensional.
Answer
Let the space V be finite dimensional. Let S be a subspace of V.
  1. The empty set is a linearly independent subset of S. ByCorollary 2.10, it can be expanded to a basis for the vector space S.
  2. Any basis for the subspace S is a linearly independent set in the superspace V. Hence it can be expanded to a basis for the superspace, which is finite dimensional. Therefore it has only finitely many members.
Problem 17
Where is the finiteness of  B  used in Theorem 2.3?
Answer
It ensures that we exhaust the  \vec{\beta} 's. That is, it justifies the first sentence of the last paragraph.

Problem 18
Prove that if  U  and  W  are both three-dimensional subspaces of  \mathbb{R}^5  then  U\cap W  is non-trivial. Generalize.
Answer
Let  B_U  be a basis for  U  and let  B_W  be a basis for  W . The set  B_U\cup B_W  is linearly dependent as it is a six member subset of the five-dimensional space  \mathbb{R}^5 . Thus some member of  B_W  is in the span of  B_U , and thus  U\cap W  is more than just the trivial space  \{\vec{0}\,\} .
Generalization: if  U,W  are subspaces of a vector space of dimension  n  and if  \dim(U)+\dim(W)>n  then they have a nontrivial intersection.
Problem 19
Because a basis for a space is a subset of that space, we are naturally led to how the property "is a basis" interacts with set operations.
  1. Consider first how bases might be related by "subset". Assume that  U,W  are subspaces of some vector space and that  U\subseteq W . Can there exist bases  B_U  for  U  and  B_W  for  W  such that  B_U\subseteq B_W ? Must such bases exist? For any basis  B_U  for  U , must there be a basis  B_W  for  W such that  B_U\subseteq B_W ? For any basis  B_W  for  W , must there be a basis  B_U  for  U  such that  B_U\subseteq B_W ? For any bases  B_U, B_W  for  U  and  W , must  B_U  be a subset of  B_W ?
  2. Is the intersection of bases a basis? For what space?
  3. Is the union of bases a basis? For what space?
  4. What about complement?
(Hint. Test any conjectures against some subspaces of  \mathbb{R}^3 .)
Answer
First, note that a set is a basis for some space if and only if it is linearly independent, because in that case it is a basis for its own span.
  1. The answer to the question in the second paragraph is "yes" (implying "yes" answers for both questions in the first paragraph). If  B_U  is a basis for  U  then  B_U  is a linearly independent subset of  W . Apply Corollary 2.10 to expand it to a basis for  W . That is the desired  B_W . The answer to the question in the third paragraph is "no", which implies a "no" answer to the question of the fourth paragraph. Here is an example of a basis for a superspace with no sub-basis forming a basis for a subspace: in  W=\mathbb{R}^2 , consider the standard basis  \mathcal{E}_2 . No sub-basis of\mathcal{E}_2 forms a basis for the subspace  U  of \mathbb{R}^2 that is the line  y=x .
  2. It is a basis (for its span) because the intersection of linearly independent sets is linearly independent (the intersection is a subset of each of the linearly independent sets). It is not, however, a basis for the intersection of the spaces. For instance, these are bases for  \mathbb{R}^2 :
    
B_1=\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle 
\quad\text{and}\quad
B_2=\langle \begin{pmatrix} 2 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 2 \end{pmatrix} \rangle
    and  \mathbb{R}^2\cap\mathbb{R}^2=\mathbb{R}^2 , but  B_1\cap B_2  is empty. All we can say is that the intersection of the bases is a basis for a subset of the intersection of the spaces.
  3. The union of bases need not be a basis: in  \mathbb{R}^2
    
B_1=\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle 
\quad\text{and}\quad
B_2=\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 2 \end{pmatrix} \rangle
    have a union  B_1\cup B_2  that is not linearly independent. A necessary and sufficient condition for a union of two bases to be a basis
    
B_1\cup B_2 \text{ is linearly independent }
\quad\iff\quad
[B_1\cap B_2]=[B_1]\cap
[B_2]
    it is easy enough to prove (but perhaps hard to apply).
  4. The complement of a basis cannot be a basis because it contains the zero vector.

Problem 20
Consider how "dimension" interacts with "subset". Assume U  and  W  are both subspaces of some vector space, and that  U\subseteq W .
  1. Prove that  \dim (U)\leq\dim (W) .
  2. Prove that equality of dimension holds if and only if  U=W .
  3. Show that the prior item does not hold if they are infinite-dimensional.
Answer
  1. A basis for  U  is a linearly independent set in  W  and so can be expanded via Corollary 2.10 to a basis for  W . The second basis has at least as many members as the first.
  2. One direction is clear: if  V=W  then they have the same dimension. For the converse, let  B_U  be a basis for  U . It is a linearly independent subset of  W  and so can be expanded to a basis for  W . If  \dim(U)=\dim(W)  then this basis for  W  has no more members than does  B_U  and so equals  B_U . Since  U  and  W  have the same bases, they are equal.
  3. Let  W  be the space of finite-degree polynomials and let  U  be the subspace of polynomails that have only even-powered terms  \{a_0+a_1x^2+a_2x^4+\dots+a_nx^{2n}\,\big|\, a_0,\ldots,a_n\in\mathbb{R}\} . Both spaces have infinite dimension, but  U  is a proper subspace.