27/09/2014

Exercise:Basis(Linear algebra)



Problem 1
Decide if each is a basis for  \mathbb{R}^3 .
  1.  \langle 
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},
\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix},
\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle
  2.  \langle 
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},
\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \rangle
  3.  \langle 
\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix},
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},
\begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} \rangle
  4.  \langle 
\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix},
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},
\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \rangle
Answer
By Theorem 1.12, each is a basis if and only if each vector in the space can be given in a unique way as a linear combination of the given vectors.
  1. Yes this is a basis. The relation
    
c_1\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
+c_2\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
+c_3\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
=\begin{pmatrix} x \\ y \\ z \end{pmatrix}
    gives
    
\left(\begin{array}{*{3}{c}|c} 
1  &3  &0  &x  \\
2  &2  &0  &y  \\
3  &1  &1  &z
\end{array}\right)
\xrightarrow[-3\rho_1+\rho_3]{-2\rho_1+\rho_2}
\;\xrightarrow[]{2\rho_2+\rho_3}
\left(\begin{array}{*{3}{c}|c} 
1  &3  &0  &x   \\
0  &-4 &0  &-2x+y   \\
0  &0  &1  &x-2y+z 
\end{array}\right)
    which has the unique solution  c_3=x-2y+z  c_2=x/2-y/4 , and  c_1=-x/2+3y/4 .
  2. This is not a basis. Setting it up as in the prior item
    
c_1\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
+c_2\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
=\begin{pmatrix} x \\ y \\ z \end{pmatrix}
    gives a linear system whose solution
    
\left(\begin{array}{*{2}{c}|c} 
1  &3  &x  \\ 
2  &2  &y  \\
3  &1  &z
\end{array}\right)
\xrightarrow[-3\rho_1+\rho_3]{-2\rho_1+\rho_2}
\;\xrightarrow[]{2\rho_2+\rho_3}
\left(\begin{array}{*{2}{c}|c} 
1  &3  &x  \\ 
0  &-4 &-2x+y  \\
0  &0  &x-2y+z
\end{array}\right)
    is possible if and only if the three-tall vector's componentsxy, and z satisfy x-2y+z=0. For instance, we can find the coefficients c_1 and c_2 that work when x=1y=1, and z=1. However, there are no c's that work for x=1y=1, and z=2. Thus this is not a basis; it does not span the space.
  3. Yes, this is a basis. Setting up the relationship leads to this reduction
    
\left(\begin{array}{*{3}{c}|c} 
0  &1  &2  &x  \\
2  &1  &5  &y  \\
-1  &1  &0  &z 
\end{array}\right)
\xrightarrow[]{rho_1\leftrightarrow\rho_3}
\;\xrightarrow[]{\rho_1+\rho_2}
\;\xrightarrow[]{(1/3)\rho_2+\rho_3}
\left(\begin{array}{*{3}{c}|c} 
-1  &1  &0   &z   \\
0  &3  &5   &y+2z  \\
0  &0  &1/3 &x-y/3-2z/3
\end{array}\right)
    which has a unique solution for each triple of components xy, and z.
  4. No, this is not a basis. The reduction
    
\left(\begin{array}{*{3}{c}|c} 
0  &1  &1  &x   \\
2  &1  &3  &y   \\
-1  &1  &0  &z  
\end{array}\right)
\xrightarrow[]{rho_1\leftrightarrow\rho_3}
\;\xrightarrow[]{\rho_1+\rho_2}
\xrightarrow[]{-1/3)\rho_2+\rho_3}
\left(\begin{array}{*{3}{c}|c} 
-1  &1  &0  &z   \\
0  &3  &3  &y+2z   \\
0  &0  &0  &x-y/3-2z/3
\end{array}\right)
    which does not have a solution for each triple xy, and z. Instead, the span of the given set includes only those three-tall vectors where  x=y/3+2z/3 .

Problem 2
Represent the vector with respect to the basis.
  1.  \begin{pmatrix} 1 \\ 2 \end{pmatrix}  B=\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix},\begin{pmatrix} -1 \\ 1 \end{pmatrix} \rangle \subseteq\mathbb{R}^2
  2.  x^2+x^3  D=\langle 1,1+x,1+x+x^2,1+x+x^2+x^3 \rangle \subseteq\mathcal{P}_3
  3.  \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}  \mathcal{E}_4\subseteq\mathbb{R}^4
Answer
  1. We solve
    
c_1\begin{pmatrix} 1 \\ 1 \end{pmatrix}
+c_2\begin{pmatrix} -1 \\ 1 \end{pmatrix}
=\begin{pmatrix} 1 \\ 2 \end{pmatrix}
    with
    
\left(\begin{array}{*{2}{c}|c} 
1  &-1  &1  \\
1  &1   &2
\end{array}\right)
\xrightarrow[]{\rho_1+\rho_2}
\left(\begin{array}{*{2}{c}|c} 
1  &-1  &1  \\
0  &2   &1
\end{array}\right)
    and conclude that  c_2=1/2  and so  c_1=3/2 . Thus, the representation is this.
    
{\rm Rep}_{B}(\begin{pmatrix} 1 \\ 2 \end{pmatrix})=\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}_B
  2. The relationship c_1\cdot(1)+c_2\cdot(1+x)+c_3\cdot(1+x+x^2)+c_4\cdot(1+x+x^2+x^3)=x^2+x^3is easily solved by eye to give that c_4=1c_3=0c_2=-1, and c_1=0.
    
{\rm Rep}_{D}(x^2+x^3)=\begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}_D
  3.  {\rm Rep}_{\mathcal{E}_4}(\begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix})
=\begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}_{\mathcal{E}_4}
Problem 3
Find a basis for   \mathcal{P}_2 , the space of all quadratic polynomials. Must any such basis contain a polynomial of each degree:~degree zero, degree one, and degree two?
Answer
One basis is  \langle 1,x,x^2 \rangle  . There are bases for \mathcal{P}_2 that do not contain any polynomials of degree one or degree zero. One is  \langle 1+x+x^2,x+x^2,x^2 \rangle  . (Every basis has at least one polynomial of degree two, though.)
Problem 4
Find a basis for the solution set of this system.

\begin{array}{*{4}{rc}r}
x_1  &-  &4x_2  &+  &3x_3  &-  &x_4  &=  &0  \\
2x_1  &-  &8x_2  &+  &6x_3  &-  &2x_4 &=  &0  
\end{array}
Answer
The reduction

\left(\begin{array}{*{4}{c}|c} 
1  &-4  &3  &-1  &0  \\
2  &-8  &6  &-2  &0
\end{array}\right)
\xrightarrow[]{2\rho_1+\rho_2}
\left(\begin{array}{*{4}{c}|c} 
1  &-4  &3  &-1  &0  \\
0  &0   &0  &0   &0
\end{array}\right)
gives that the only condition is that x_1=4x_2-3x_3+x_4. The solution set is

\{\begin{pmatrix} 4x_2-3x_3+x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}
\,\big|\, x_2,x_3,x_4\in\mathbb{R}\}
=\{x_2\begin{pmatrix} 4 \\ 1 \\ 0 \\ 0 \end{pmatrix}
+x_3\begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix}
+x_4\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \,\big|\, x_2,x_3,x_4\in\mathbb{R}\}
and so the obvious candidate for the basis is this.

\langle \begin{pmatrix} 4 \\ 1 \\ 0 \\ 0 \end{pmatrix},
\begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix},
\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}   \rangle
We've shown that this spans the space, and showing it is also linearly independent is routine.

Problem 5
Find a basis for  \mathcal{M}_{2 \! \times \! 2} , the space of  2 \! \times \! 2  matrices.
Answer
There are many bases. This is an easy one.

\langle 
\begin{pmatrix}
1  &0  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &1  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
1  &0
\end{pmatrix},
\begin{pmatrix}
0  &0  \\
0  &1
\end{pmatrix}   \rangle

Problem 6
Find a basis for each.
  1. The subspace \{a_2x^2+a_1x+a_0\,\big|\, a_2-2a_1=a_0\} of \mathcal{P}_2
  2. The space of three-wide row vectors whose first and second components add to zero
  3. This subspace of the 2 \! \times \! 2 matrices
    
\{\begin{pmatrix}
a  &b  \\
0  &c  
\end{pmatrix} \,\big|\, c-2b=0\}
Answer
For each item, many answers are possible.
  1. One way to proceed is to parametrize by expressing the a_2 as a combination of the other two a_2=2a_1+a_0. Then a_2x^2+a_1x+a_0 is (2a_1+a_0)x^2+a_1x+a_0 and
     
\{(2a_1+a_0)x^2+a_1x+a_0\,\big|\, a_1,a_0\in\mathbb{R}\}
=\{a_1\cdot(2x^2+x)+a_0\cdot(x^2+1)\,\big|\, a_1,a_0\in\mathbb{R}\}
    suggests \langle 2x^2+x,x^2+1 \rangle . This only shows that it spans, but checking that it is linearly independent is routine.
  2. Parametrize \{\begin{pmatrix} a  &b  &c \end{pmatrix}\,\big|\, a+b=0\} to get \{\begin{pmatrix} -b &b &c \end{pmatrix}\,\big|\, b,c\in\mathbb{R}\}, which suggests using the sequence \langle \begin{pmatrix} -1 &1 &0 \end{pmatrix},\begin{pmatrix} 0 &0 &1 \end{pmatrix} \rangle . We've shown that it spans, and checking that it is linearly independent is easy.
  3. Rewriting
    
\{\begin{pmatrix}
a  &b  \\
0  &2b
\end{pmatrix}\,\big|\, a,b\in\mathbb{R}\}
=\{a\cdot\begin{pmatrix}
1  &0  \\
0  &0 
\end{pmatrix}
+b\cdot\begin{pmatrix}
0  &1  \\
0  &2
\end{pmatrix} \,\big|\, a,b\in\mathbb{R}\}
    suggests this for the basis.
    
\langle \begin{pmatrix}
1  &0  \\
0  &0
\end{pmatrix},
\begin{pmatrix}
0  &1  \\
0  &2
\end{pmatrix} \rangle
Problem 7
Check Example 1.6.
Answer
We will show that the second is a basis; the first is similar. We will show this straight from the definition of a basis, because this example appears before Theorem 1.12.
To see that it is linearly independent, we set up  c_1\cdot(\cos\theta-\sin\theta)+c_2\cdot(2\cos\theta+3\sin\theta)=0\cos\theta+0\sin\theta . Taking  \theta=0  and  \theta=\pi/2  gives this system

\begin{array}{*{2}{rc}r}
c_1\cdot 1    &+  &c_2\cdot 2   &=  &0  \\
c_1\cdot (-1) &+  &c_2\cdot 3   &=  &0  
\end{array}
\;\xrightarrow[]{\rho_1+\rho_2}\;
\begin{array}{*{2}{rc}r}
c_1  &+  &2c_2   &=  &0  \\
&+  &5c_2   &=  &0 
\end{array}
which shows that c_1=0 and c_2=0.
The calculation for span is also easy; for any x,y\in\mathbb{R}, we have that  c_1\cdot(\cos\theta-\sin\theta)+c_2\cdot(2\cos\theta+3\sin\theta)=x\cos\theta+y\sin\theta gives that  c_2=x/5+y/5  and that  c_1=3x/5-2y/5 , and so the span is the entire space.

Problem 8
Find the span of each set and then find a basis for that span.
  1. \{1+x,1+2x\} in \mathcal{P}_2
  2. \{2-2x,3+4x^2\} in \mathcal{P}_2
Answer
  1. Asking which a_0+a_1x+a_2x^2 can be expressed as c_1\cdot (1+x)+c_2\cdot (1+2x) gives rise to three linear equations, describing the coefficients of x^2x, and the constants.
     
\begin{array}{*{2}{rc}r}
c_1 &+ &c_2  &= &a_0 \\
c_1 &+ &2c_2 &= &a_1 \\
&  &0    &= &a_2
\end{array}
    Gauss' method with back-substitution shows, provided that a_2=0, that c_2=-a_0+a_1 and c_1=2a_0-a_1. Thus, with a_2=0, we can compute appropriate c_1 and c_2for any a_0 and a_1. So the span is the entire set of linear polynomials \{a_0+a_1x\,\big|\, a_0,a_1\in\mathbb{R}\}. Parametrizing that set \{a_0\cdot 1+a_1\cdot x\,\big|\, a_0,a_1\in\mathbb{R}\} suggests a basis \langle 1,x \rangle (we've shown that it spans; checking linear independence is easy).
  2. With
    
a_0+a_1x+a_2x^2
=c_1\cdot(2-2x)+c_2\cdot(3+4x^2)
=(2c_1+3c_2)+(-2c_1)x+(4c_2)x^2
    we get this system.
     
\begin{array}{*{2}{rc}r}
2c_1  &+ &3c_2  &= &a_0 \\
-2c_1 &  &      &= &a_1 \\
&  &4c_2  &= &a_2
\end{array}
\;\xrightarrow[]{\rho_1+\rho_2}
\;\xrightarrow[]{-4/3)\rho_2+\rho_3}\;
\begin{array}{*{2}{rc}r}
2c_1  &+ &3c_2  &= &a_0 \\
&  &3c_2  &= &a_0+a_1 \\
&  &0     &= &(-4/3)a_0-(4/3)a_1+a_2
\end{array}
    Thus, the only quadratic polynomials a_0+a_1x+a_2x^2with associated c's are the ones such that 0=(-4/3)a_0-(4/3)a_1+a_2. Hence the span is \{(-a_1+(3/4)a_2)+a_1x+a_2x^2\,\big|\, a_1,a_2\in\mathbb{R}\}. Parametrizing gives \{a_1\cdot (-1+x)+a_2\cdot ((3/4)+x^2)\,\big|\, a_1,a_2\in\mathbb{R}\}, which suggests \langle -1+x,(3/4)+x^2 \rangle  (checking that it is linearly independent is routine).

Problem 9
Find a basis for each of these subspaces of the space \mathcal{P}_3of cubic polynomials.
  1. The subspace of cubic polynomials p(x) such that p(7)=0
  2. The subspace of polynomials p(x) such that p(7)=0and p(5)=0
  3. The subspace of polynomials p(x) such that p(7)=0p(5)=0, and~p(3)=0
  4. The space of polynomials p(x) such that p(7)=0p(5)=0p(3)=0, and~p(1)=0
Answer
  1. The subspace is  \{a_0+a_1x+a_2x^2+a_3x^3 \,\big|\, a_0+7a_1+49a_2+343a_3=0 \}. Rewriting a_0=-7a_1-49a_2-343a_3 gives  \{(-7a_1-49a_2-343a_3)+a_1x+a_2x^2+a_3x^3 \,\big|\, a_1,a_2,a_3\in\mathbb{R} \}, which, on breaking out the parameters, suggests  \langle -7+x,-49+x^2,-343+x^3 \rangle   for the basis (it is easily verified).
  2. The given subspace is the collection of cubics p(x)=a_0+a_1x+a_2x^2+a_3x^3 such that a_0+7a_1+49a_2+343a_3=0 and a_0+5a_1+25a_2+125a_3=0. Gauss' method
    
\begin{array}{*{4}{rc}r}
a_0  &+  &7a_1  &+  &49a_2  &+  &343a_3  &=  &0  \\
a_0  &+  &5a_1  &+  &25a_2  &+  &125a_3  &=  &0    
\end{array}
\;\xrightarrow[]{\rho_1+\rho_2}\;
\begin{array}{*{4}{rc}r}
a_0  &+  &7a_1  &+  &49a_2  &+  &343a_3  &=  &0  \\
&   &-2a_1 &-  &24a_2  &-  &218a_3  &=  &0    
\end{array}
    gives that a_1=-12a_2-109a_3 and that a_0=35a_2+420a_3. Rewriting (35a_2+420a_3)+(-12a_2-109a_3)x+a_2x^2+a_3x^3as a_2\cdot(35-12x+x^2)+a_3\cdot(420-109x+x^3)suggests this for a basis \langle 35-12x+x^2,420-109x+x^3 \rangle . The above shows that it spans the space. Checking it is linearly independent is routine. (Comment. A worthwhile check is to verify that both polynomials in the basis have both seven and five as roots.)
  3. Here there are three conditions on the cubics, that a_0+7a_1+49a_2+343a_3=0, that a_0+5a_1+25a_2+125a_3=0,and that a_0+3a_1+9a_2+27a_3=0. Gauss' method
    
\begin{array}{*{4}{rc}r}
a_0  &+  &7a_1  &+  &49a_2  &+  &343a_3  &=  &0  \\
a_0  &+  &5a_1  &+  &25a_2  &+  &125a_3  &=  &0  \\    
a_0  &+  &3a_1  &+  &9a_2   &+  &27a_3   &=  &0    
\end{array}
\;\xrightarrow[-\rho_1+\rho_3]{-\rho_1+\rho_2}
\;\xrightarrow[]{2\rho_2+\rho_3}\;
\begin{array}{*{4}{rc}r}
a_0  &+  &7a_1  &+  &49a_2  &+  &343a_3  &=  &0  \\
&   &-2a_1 &-  &24a_2  &-  &218a_3  &=  &0  \\    
&   &      &   &8a_2   &+  &120a_3  &=  &0    
\end{array}
    yields the single free variable a_3, with a_2=-15a_3a_1=71a_3, and a_0=-105a_3. The parametrization is this.
     
\{(-105a_3)+(71a_3)x+(-15a_3)x^2+(a_3)x^3\,\big|\, a_3\in\mathbb{R}\}=
\{a_3\cdot(-105+71x-15x^2+x^3)\,\big|\, a_3\in\mathbb{R}\}
    Therefore, a good candidate for the basis is \langle -105+71x-15x^2+x^3 \rangle . It spans the space by the work above. It is clearly linearly independent because it is a one-element set (with that single element not the zero object of the space). Thus, any cubic through the three points (7,0)(5,0), and (3,0) is a multiple of this one. (Comment. As in the prior question, a worthwhile check is to verify that plugging seven, five, and three into this polynomial yields zero each time.)
  4. This is the trivial subspace of \mathcal{P}_3. Thus, the basis is empty \langle  \rangle .
Remark. The polynomial in the third item could alternatively have been derived by multiplying out (x-7)(x-5)(x-3).
Problem 10
We've seen that it is possible for a basis to remain a basis when it is reordered. Must it remain a basis?
Answer
Yes. Linear independence and span are unchanged by reordering.
Problem 11
Can a basis contain a zero vector?
Answer
No linearly independent set contains a zero vector.

Problem 12
Let  \langle \vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3 \rangle   be a basis for a vector space.
  1. Show that  \langle c_1\vec{\beta}_1,c_2\vec{\beta}_2,c_3\vec{\beta}_3 \rangle   is a basis when  c_1, c_2, c_3\neq 0 . What happens when at least one  c_i  is 0?
  2. Prove that  \langle \vec{\alpha}_1,\vec{\alpha}_2,\vec{\alpha}_3 \rangle   is a basis where  \vec{\alpha}_i=\vec{\beta}_1+\vec{\beta}_i .
Answer
  1. To show that it is linearly independent, note that  d_1(c_1\vec{\beta}_1)+d_2(c_2\vec{\beta}_2)+d_3(c_3\vec{\beta}_3)=\vec{0}  gives that  (d_1c_1)\vec{\beta}_1+(d_2c_2)\vec{\beta}_2+(d_3c_3)\vec{\beta}_3 =\vec{0} , which in turn implies that each  d_ic_i  is zero. But with  c_i\neq 0  that means that each  d_i  is zero. Showing that it spans the space is much the same; because \langle \vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3 \rangle  is a basis, and so spans the space, we can for any \vec{v} write  \vec{v}=d_1\vec{\beta}_1+d_2\vec{\beta}_2+d_3\vec{\beta}_3 , and then  \vec{v}=(d_1/c_1)(c_1\vec{\beta}_1)+(d_2/c_2)(c_2\vec{\beta}_2)+(d_3/c_3)(c_3\vec{\beta}_3) . If any of the scalars are zero then the result is not a basis, because it is not linearly independent.
  2. Showing that \langle 2\vec{\beta}_1,\vec{\beta}_1+\vec{\beta}_2, \vec{\beta}_1+\vec{\beta}_3 \rangle  is linearly independent is easy. To show that it spans the space, assume that  \vec{v}=d_1\vec{\beta}_1+d_2\vec{\beta}_2+d_3\vec{\beta}_3 . Then, we can represent the same  \vec{v}  with respect to  \langle 2\vec{\beta}_1,\vec{\beta}_1+\vec{\beta}_2,\vec{\beta}_1+\vec{\beta}_3 \rangle   in this way \vec{v}=(1/2)(d_1-d_2-d_3)(2\vec{\beta}_1)+d_2(\vec{\beta}_1+\vec{\beta}_2)+d_3(\vec{\beta}_1+\vec{\beta}_3).
Problem 13
Find one vector \vec{v} that will make each into a basis for the space.
  1. \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix},\vec{v} \rangle  in \mathbb{R}^2
  2. \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},
\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},\vec{v} \rangle  in \mathbb{R}^3
  3. \langle x,1+x^2,\vec{v} \rangle  in \mathcal{P}_2
Answer
Each forms a linearly independent set if \vec{v} is ommitted. To preserve linear independence, we must expand the span of each. That is, we must determine the span of each (leaving\vec{v} out), and then pick a \vec{v} lying outside of that span. Then to finish, we must check that the result spans the entire given space. Those checks are routine.
  1. Any vector that is not a multiple of the given one, that is, any vector that is not on the line y=x will do here. One is\vec{v}=\vec{e}_1.
  2. By inspection, we notice that the vector \vec{e}_3 is not in the span of the set of the two given vectors. The check that the resulting set is a basis for \mathbb{R}^3 is routine.
  3. For any member of the span \{c_1\cdot(x)+c_2\cdot(1+x^2)\,\big|\, c_1,c_2\in\mathbb{R}\}, the coefficient of x^2 equals the constant term. So we expand the span if we add a quadratic without this property, say, \vec{v}=1-x^2. The check that the result is a basis for \mathcal{P}_2 is easy.


Problem 14
Where  \langle \vec{\beta}_1,\dots,\vec{\beta}_n  \rangle   is a basis, show that in this equation

c_1\vec{\beta}_1+\dots+c_k\vec{\beta}_k
=
c_{k+1}\vec{\beta}_{k+1}+\dots+c_n\vec{\beta}_n
each of the  c_i 's is zero. Generalize.
Answer
To show that each scalar is zero, simply subtract  c_1\vec{\beta}_1+\dots+c_k\vec{\beta}_k-c_{k+1}\vec{\beta}_{k+1}-\dots-c_n\vec{\beta}_n=\vec{0} . The obvious generalization is that in any equation involving only the  \vec{\beta} 's, and in which each  \vec{\beta}  appears only once, each scalar is zero. For instance, an equation with a combination of the even-indexed basis vectors (i.e., \vec{\beta}_2\vec{\beta}_4, etc.) on the right and the odd-indexed basis vectors on the left also gives the conclusion that all of the coefficients are zero.
Problem 15
A basis contains some of the vectors from a vector space; can it contain them all?
Answer
No; no linearly independent set contains the zero vector.